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ABSTRACT

Several relatively thick (>3 km deep) Cenozoic basins, including the Cupertino, Evergreen, 

Livermore, and San Pablo basins, may locally enhance strong ground motions in the San 

Francisco Bay area, California. As part of a crustal-scale, three-dimensional seismic velocity and 

density model for the Bay area, we have compiled data from sonic and density logs from oil test 

wells in the Bay area to better understand strong motion resonances generated by these basins. We 

have compiled the velocities and densities of sediments and rocks within these Cenozoic basins 

using 59 sonic and density logs from 51 oil test wells. The well data are primarily from the 

Livermore, Concord, and Los Medanos oil fields, and the Sacramento-San Joaquin delta, and 

provide measurements from the surface to as much as 5.3 km subsurface. Only a few logs from 

the South Bay are included in this compilation. The logs were hand digitized at non-uniform 

intervals between 3 and 30 m to capture the significant variations of the logs with depth for 

frequencies up to 2 Hz. Linear regression through 41 sonic logs yields Vp (km/s) = 2.24 + 

0.599Z, where Z is depth in km. Shallow borehole data, generally from the South Bay, and from 

less than 30 m deep, indicate that the average surficial P-wave velocity at 10 holes in weathered 

Tertiary sedimentary units ranges from 2.21 and 2.32 km/s and is in close agreement with 

extrapolated P-wave velocities inferred from the oil test wells. A sonic log for Eocene sediments 

from Butano Ridge in San Mateo County shows that at a given depth, velocities are approximately 

0.5 km/s higher than those near Livermore. The higher P-wave velocities for the Tertiary 

sedimentary rocks at Butano Ridge probably result from a combination of dense volcanic clasts in 

conglomerates plus very tight compaction of the sandstones. Density logs in Cenozoic 
sedimentary rocks show higher scatter. Linear regression of 18 density logs yield p (g/cm3) = 

2.25 + 0.065Z. Average densities of weathered Tertiary sedimentary rocks measured on core 

samples from 5 shallow boreholes in the South Bay lie between 2.20 and 2.25 g/cm3 , in close 

agreement with the surficial density inferred from linear regression of oil well data. This report 

presents the locations, elevations, depths, stratigraphic and other information about the oil test 

wells, provides plots showing the density and sonic velocities as a function of depth for each well 

log, and compiles all data to better understand the velocities and densities of Cenozoic sedimentary 

rocks in the Bay area.
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INTRODUCTION

Several relatively thick (>3 km deep) Cenozoic basins in the San Francisco Bay area, 

California, including the Cupertino, Evergreen, Livermore, and San Pablo basins (Fig. 1), are 

defined by inversion of gravity anomalies, seismic reflection and refraction profiles, and borehole 

control [Meltzer et al., 1987; Smith, 1992; Wright and Smith, 1992; Jachens et al., 1995]. 

Observations of strong ground motion data from earthquakes in southern California and synthetic 

seismograms calculated from three-dimensional velocity models suggest that these thick basins 

may locally enhance strong ground motions in the Bay area [e.g., Frankel and Vidale, 1992]. We 

have compiled sonic and density logs from oil test wells in the Bay area as part of a crustal-scale 

three-dimensional seismic velocity and density model for the Bay area being developed to better 

understand strong motion resonances generated by these basins [Brocher et al., 1997]. Previous 

compilations of check shot P-wave velocity data from oil test wells within Tertiary sedimentary 

units in California were made for the southern San Joaquin valley, near Bakersfield [Hafner, 1941; 

Haskell, 1941; Wells, 1949].

We present data from 59 sonic and density logs from 51 oil test wells in the Bay area to 

categorize the velocities and densities of these Cenozoic sedimentary basins. The geometries of 

these basins are inferred from inversion of gravity data [Jachens et al., 1995]. The well data are 

primarily from the Livermore, Concord, and Los Medanos oil fields, and the Sacramento-San 

Joaquin delta (Figures 1 and 2), and provide measurements from the surface to as deep as 5.3 km 

subsurface. Well logs from eighteen additional wells in these fields are available, but were not 

analyzed because they would not substantively improve upon the spatial distribution and depth 

coverage of the logs summarized here. Locations, elevations, and depths of the oil test wells, as 

well as the lease name, well number, operator, name of the oil field, and completion year are 

presented in Table 1. In this table the wells are ordered by latitude, from north to south. This 

information is taken from the Well History Control System (WHCS) One-line File, an on-line 

digital well-log database leased from Petroleum Information by the USGS Office of Energy



Resources at Denver. Table 1 also provides information on the lithologies and stratigraphy 

encountered in the holes, taken from the compilation of Bay area wells by Powell et al. [1997]. 

Age control is available for 20 of the 51 wells. Finally, because the logs were run over a 30-year 

interval between 1959 and 1989, Table 1 provides information on the type of sonic and density 

tool used to make the log, as well as the other tools which were run simultaneously with these 

tools (normally caliper, spontaneous potential, and gamma-ray). Many of the sonic logs were 

made with older, short tools, with short spans between the source and receivers.

WELL LOG ANALYSIS

Sonic and density logs were hand digitized at non-uniform intervals between 3 and 30 m to 

capture the significant variations of the logs with depth for frequencies up to 2 Hz. The sampling 

fit the average linear trends in the data over these intervals. We note that our sampling interval was 

not intended and is not sufficiently dense for the calculation of high-frequency (say >10 Hz) 

synthetic seismograms. For higher-frequency synthetics, it will be necessary to redigitize the logs 

with a finer sampling interval.

For the 41 sonic logs, we picked transit times (fis/ft) as a function of depth in feet down the 

well. For the gamma-gamma density logs, we picked bulk density in g/cm3 as a function of depth 

in feet down the well. For the neutron density porosity logs, we converted the logged density 

porosity (<|>) back to formation density (pfd) using pfd = pm + (pf - pm)(J>, where the matrix density 

pm = 2.65 g/cm3 , and the fluid density pf = 1.0 g/cm3 [Ellis, 1987]. Almost all of the logs 

analyzed here are plotted at a scale of 100 feet = 2 inches. Depths are measured from an arbitrary 

reference datum, normally the K.B., located 12 feet (3.65 m) above ground level. The downhole 

depths reported here have not been corrected for this small upward shift. Cased intervals of the 

wells and sections identified on the logs as having cycle skipping problems were not digitized. In 

some cases data from the logs were ignored: these data were associated with washouts, thick 

mudcake, invasion of drill fluids or large deviations from the general trend of density and sonic 

values having very limited depth extent, generally less than a few tens of feet [Ellis, 1987]. Using



Excel spreadsheets, the digitized sonic log data were converted from transit times to velocities 

(rn/s) and depths from feet to meters for both the sonic and density logs. Plots showing seismic 

velocities and densities as a function of depth for each well are presented in Figures 2 to 60. 

Although we digitized all repeated passes of tools in sections of the wells, we do not show these 

redundant passes in Figures 3 to 61.

Oil test wells having the longest sonic logs include: Horgan Community #l/Chevron USA 

(Fig. 3), H D Peterson et al #558-25/Standard Oil of America (Fig. 5), Elk-Tubbs #l/Elk 

Exploration (Fig. 8), United California Bank #l/Chevron USA (Fig. 11), L Nixon #l/Chevron 

USA (Fig. 12), Bethlehem #l/Chevron USA, Perry #l/Chevron USA (Fig. 13), Hans Nielson et 

al #l/Exxon Corp. (Fig. 21), A Gumpert #l/Cities Service Oil (Fig. 22), and Santa Cruz Lumber

#12-18/Champlin Petroleum (Fig. 43). The longest density logs are from the following wells: 

Bethlehem #l/Chevron USA (Fig. 49), E Gumpert #l/Chevron USA (Fig. 50), A Gumpert

#l/Cities Service Oil (Fig. 51), and Peterson Fee #43-17/Diamond Shamrock Oil (Fig. 56). 

Typically, these and the other logs compiled here provide evidence for a monotonic 

increase in sonic velocity and density with depth, with little evidence for significant reversals in 

sonic velocity or density. The Wisner Unit #l-l/Hunnicutt & Camp Drilling encountered a thick 

sequence of Franciscan rocks beneath 625 m depth (Fig. 40). This Wisner well is the only known 

penetration of Franciscan rocks in this compilation of Bay area wells, and shows considerable 

variation in sonic velocity for the 450 m of Franciscan rocks sampled in the well.

INTERPRETATION OF WELL LOG DATA

To estimate average P-wave velocity and density gradients for the Cenozoic sedimentary 

units in the Bay area, we have plotted all the well data in separate scatter plots for sonic velocity 

and density (Figs. 62 and 63). For this purpose we have eliminated data from Franciscan 

assemblage rocks, but we have retained data corresponding to Cretaceous members of the Great 

Valley sequence. The latter data were retained because they comprise a relatively small fraction of 

the database and because we found no obvious break in velocity or density in the wells where the



depth of the Tertiary/Great Valley contact is known (see Table 1). The absence of a distinct break 

at the Tertiary/Cretaceous boundary is consistent with the depositional nature of this contact and the 

absence of a distinctive lithologic contrast across it [Bartow and Nilsen, 1990].

Linear regression through all the P-wave velocity data for 41 sonic logs yields Vp (km/s) = 

2.24 + 0.599Z for the Cenozoic (predominately Tertiary) sedimentary units, where Z is depth in 

km (Fig. 62). The R2 for this regression is 0.633. Shallow (<30 m) borehole data, from the 

South Bay, indicate that the average surficial P-wave velocity of weathered Tertiary sedimentary 

units at 10 holes lies between 2.21 and 2.32 km/s [Gibbs et al., 1975, 1976, 1992, 1993, 1994; 

Fumal et al., 1982; Thiel and Schneider, 1993], in close agreement with the surficial velocities 

extrapolated from the oil test wells. A published compilation of check shot data from 62 wells in 

the southern San Joaquin Valley yielded Vp (km/s) = 2.01 + 0.464Z [Hafner, 1940]. The lower 

surficial P-wave velocity and P-wave velocity gradient in the southern San Joaquin Valley may 

reflect a number of causes, including different provenance, abundance of organic matter, and the 

presence of finer grained sediments near the center of the Great Valley than more proximal facies in 

the Bay area. Applying previous compilations of check shot P-wave velocity data from oil test 

wells within Tertiary sedimentary units in California were made for the southern San Joaquin 

valley, near Bakersfield [Hafner, 1941; Haskell, 1941; Wells, 1949], to the Bay area, may 

therefore result in the underestimation of P-wave velocity with depth.

One sonic log from Butano Ridge in San Mateo County (Santa Cruz Lumber #12- 

18/Champlain Petroleum) shows that at a given depth, velocities in the Eocene Butano sandstone 

are approximately 0.5 km/s higher than those in Cenozoic (primarily Tertiary) sedimentary rocks 

near Livermore (Fig. 43). The higher velocities at Butano Ridge are probably a combination of 

dense volcanic clasts in conglomerates and very tight compaction and cementation of the Butano 

sandstone, perhaps reflecting a different burial history, not addressed in our compilation.

Another limitation of our compilation is that it is largely based on wells from the East Bay 

(Figs. 1 and 2). The apparent scarcity of oil test well logs from San Mateo and Santa Clara



Counties means that the P-wave velocities and densities of Tertiary sedimentary rocks there are 

much less known than those in the East Bay.

Density logs for the Cenozoic sedimentary units show higher scatter than do the P-wave

velocities. Linear regression of data from 18 density logs yield p (g/cm3) = 2.25 + 0.065Z, where

Z is depth in km (Fig. 63). The R2 for this regression is 0.301. Average densities of weathered 

Tertiary sedimentary rocks measured on core samples from 5 shallow (<30 m deep) South Bay

boreholes lie between 2.20 and 2.25 g/cm3 [Gibbs et al., 1975, 1976], in close agreement with the 

surficial density inferred from our linear regression of the test well density log data.

DATA AVAILABILITY

The picks of density and seismic velocity shown in Figures 3 to 61 are available in Excel4 

and Excel5 spreadsheets using anonymous ftp. The anonymous ftp address is: 

eratos.wr.usgs.gov. Change the directory (cd) to /sfbay/welllogs. The files are named 

SFBay.sonic.xl4.bin and SFBay.density.xl4.bin (Excel4) and SFBay.sonic.xl5.bin and 

SFBay.density.xl5.bin (Excel5), in Mac Binary n format. Table 1 of this report is also in this ftp 

site, labeled as Table 1.

DISCUSSION

Ultimately, S-wave as well as P-wave velocities are needed for the calculation of strong 

ground motions in the San Francisco Bay area. Average Vp/Vs ratios in weathered Tertiary 

sedimentary units from shallow (30-m) boreholes from 10 holes in the South Bay range from 2.8 

to 4.0 [Gibbs et al., 1975, 1976, 1992, 1993, 1994; Fumal et al., 1982; Thiel and Schneider, 

1993]. Sonic and density logs from the oil test wells do not directly provide S-wave velocities at 

greater depth. However, published compilations of S-wave data for sedimentary rocks provide 

some guidance for typical Vp/Vs ratios in Tertiary sedimentary units. Ohta et al. [1977] published 

Vs and Vp in two deep holes sampling Tertiary sediments in Japan. Hamilton [1979] compiled



these and similar measurements in Russia to obtain Vp/Vs ratios in the uppermost 1 km of section 

within Tertiary sedimentary units. Finally, Castagna et al. [1985] compiled Vs and Vp data from 

S-wave and P-wave logging and other measurements to obtain Vp/Vs for a variety of clastic silicate 

rocks. Castagna et al. [1985] suggest that Vp/Vs ratios in sandstones reach an average value near 

1.7 beginning at depths of about 2 km, whereas the Vp/Vs in noncalcareous shales reach an 

average value of about 2 at depths near 3 km. Based on the shallow (30-m) borehole data, 

Hamilton [1979], and Castagna et al. [1985], we propose the following function for Vp/Vs in the 

Tertiary sedimentary rocks in the San Francisco Bay area: Vp/Vs = 4.0 - 1.504Z for Z < 1.33 km, 

and Vp/Vs = 2.0 for Z > 1.33 km.
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ABBREVIATIONS USED IN TABLE 1:

BHC - Borehole Compensated Sonic Log
CNFD - Compensated Neutron Formation Density*
CFD gg - Compensated Formation Density (gamma-gamma)*
CNF (ds) - Compensated Neutron Formation Density (Dual Spaced)*
Cal. - Caliper
SP - Spontaneous Potential
GR - Gamma Ray

T3R3R - Sonic tool spacing (in feet) between transmitter (T) and receivers (R)

*A11 density logging tools employ the backscattered gamma-ray technique, commonly called 
"gamma-gamma". The different names used here are either from different vendors or from 
different generations (having different trademark names).
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WELLS WITH SONIC OR DENSITY LOGS

38-

.

LATITUDE
CO ;v| Ol

1 i

-

37-

36.5- 
-1J

Cotati

23 -12

,/li | SANw l. : " : :: :-: :: ::.i>;.::: : ; ;x::'\ ^^* *' ^

v||iilPABLO 
>P BASIN <

Pinole Point

LIVERMORE
BASIN

. ^
La Honda \

2.5 -1J

Concord
i

r>^ Livermore

C|||;S;*S:::'!|S« * *

pllilf% ** *

EVERGREEN 
f^BASIN

k
\ A
X\

CUPERTINO
BASIN

Sargent  

22 -12

. ' 

1.5 -1 21
LONGITUDE

Figure 1. Map showing locations of wells having sonic or density logs analyzed in this report. Shaded 
regions show selected Cenozoic basins inferred from inversion of gravity data [Jachens et al., 1995]. 
Selected oil fields are labeled (Cotati, Concord, Livermore, La Honda, and Sargent fields).
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